Divisors on the Space of Maps to Grassmannians
نویسنده
چکیده
In this note we study the divisor theory of the Kontsevich moduli spacesM0,0(G(k, n), d) of genus-zero stable maps to the Grassmannians. We calculate the classes of several geometrically significant divisors. We prove that the cone of effective divisors stabilizes as n increases and we determine the stable effective cone. We also characterize the ample cone.
منابع مشابه
Explicit Computations for the Intersection Numbers on Grassmannians , and on the Space of Holomorphic Maps from CP 1 into
متن کامل
On the pointfree counterpart of the local definition of classical continuous maps
The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...
متن کاملGromov-witten Invariants of Jumping Curves
Given a vector bundle E on a smooth projective variety X, we can define subschemes of the Kontsevich moduli space of genus-zero stable maps M0,0(X, β) parameterizing maps f : P1 → X such that the Grothendieck decomposition of f∗E has a specified splitting type. In this paper, using a “compactification” of this locus, we define Gromov-Witten invariants of jumping curves associated to the bundle ...
متن کاملGromov Invariants for Holomorphic Maps from Riemann Surfaces to Grassmannians
Two compactifications of the space of holomorphic maps of fixed degree from a compact Riemann surface to a Grassmannian are studied. It is shown that the Uhlenbeck compactification has the structure of a projective variety and is dominated by the algebraic compactification coming from the Grothendieck Quot Scheme. The latter may be embedded into the moduli space of solutions to a generalized ve...
متن کاملDivisors on the Moduli Spaces of Stable Maps to Flag Varieties and Reconstruction
We determine generators for the codimension 1 Chow group of the moduli spaces of genus zero stable maps to flag varieties G/P . In the case of SL flags, we find all relations between our generators, showing that they essentially come from M0,n. In addition, we analyze the codimension 2 classes on the moduli spaces of stable maps to Grassmannians and prove a new codimension 2 relation. This will...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006